A Clustering Validity Index Based on Pairing Frequency
نویسندگان
چکیده
منابع مشابه
A comprehensive validity index for clustering
Cluster validity indices are used for both estimating the quality of a clustering algorithm and for determining the correct number of clusters in data. Even though several indices exist in the literature, most of them are only relevant for data sets that contain at least two clusters. This paper introduces a new bounded index for cluster validity called the score function (SF), a double exponen...
متن کاملA cluster validity index for fuzzy clustering
Cluster validity indexes have been used to evaluate the fitness of partitions produced by clustering algorithms. This paper presents a new validity index for fuzzy clustering called a partition coefficient and exponential separation (PCAES) index. It uses the factors from a normalized partition coefficient and an exponential separation measure for each cluster and then pools these two factors t...
متن کاملA Hybrid Fuzzy Clustering Method with a Robust Validity Index
A robust validity index for fuzzy c-means (FCM) algorithm is proposed in this paper. The purpose of fuzzy clustering is to partition a given set of training data into several different clusters that can then be modeled by fuzzy theory. The FCM algorithm has become the most widely used method in fuzzy clustering. Although, there are some successful applications of FCM have been proposed, a disad...
متن کاملClustering of the self-organizing map using a clustering validity index based on inter-cluster and intra-cluster density
The self-organizing map (SOM) has been widely used in many industrial applications. Classical clustering methods based on the SOM often fail to deliver satisfactory results, specially when clusters have arbitrary shapes. In this paper, through some preprocessing techniques for 4ltering out noises and outliers, we propose a new two-level SOM-based clustering algorithm using a clustering validity...
متن کاملClustering validity based on the most similarity
basic requirement of many studies is the necessity of classifying data. Clustering is a proposed method for summarizing networks. Clustering methods can be divided into two categories named model-based approaches and algorithmic approaches. Since the most of clustering methods depend on their input parameters, it is important to evaluate the result of a clustering algorithm with its' different ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2017
ISSN: 2169-3536
DOI: 10.1109/access.2017.2743985